

Sendyne® Sensing Products Family

Sendyne SFP203MOD Precision Current Measurement Module

Description

The Sendyne SFP203MOD is a shunt-based, automotive grade precision module capable of measuring currents from mA to 500 A continuous. The module incorporates Sendyne's SFP200 IC and an 18 $\mu\Omega$ shunt and achieves an accuracy of better than ± 1.0 % (typically $\pm 0.5\%$) over the entire operating temperature range of -40 °C to +125 °C.

The module simultaneously measures bi-directional DC current through the shunt temperature, as well as provides separate charge, discharge and total Coulomb output.

The module provides automatic compensation for resistance dependence of the shunt on temperature.

Communications are achieved via an isolated CAN 2.0B interface (500 kbit/s).

Applications

- Battery monitoring for automotive applications
- Grid energy storage
- Home energy storage

Operating Specifications

operating operations		
Parameter	Value	
Shunt value	18 μOhm	
Power supply	+4.5 ~ +5.5 V	
Interface	CAN 2.0B isolated,120 Ω terminated	
Current measurement range	±500 A continuous / ±1000 A (5 s), <±1.0% error	
Rating	Automotive	
Power consumption	< 350 mW	

Technical Specifications

Electrical Specifications					
Parameter	Min	Тур	Max	Units	Conditions/Comments
Power and General					
Shunt & electronics operating temperature range	-40		+125	°C	
Operating temperature range for connectors	-40		+105	°C	
Supply Current			50	mA	
Start-up time		0.5	0.75	S	After initial application of power and power supply stabilization
Current Measurement					
Total Shunt Resistance	16	18	20	$\mu\Omega$	
Nominal Full-scale current		±500		A	Continuous rating in still air at room temperature of 23 °C with module connected to 18" (457 mm) 1/0 AWG cable on each side
Peak Full-scale current		±1250		A	Maximum current value that is measured without clipping; less than 5 s duration, the same conditions as above
Current offset error*	-50	<±20	+50	mA	Uncalibrated performance, applies over the full operating temperature range
Current noise error*		<25	50	$mA_{_{RMS}}$	1 Hz reporting rate
Current value error*	-0.25		+0.25	%	Room temperature, test current ±20 A or higher
	-0.5		+0.5	%	0 °C to +50 °C, test current as above
	-1		+1	%	-40 °C to +125 °C, test current as above
		±1		%	End of life, test current as above
Current measurement resolution		<100		μΑ	Minimum discernible current change; corresponds to one count of Analog to Digital Converter (ADC), 1 Hz current report rate

^{*} The combined Total Current Error is the ±sum of Current offset error, Current noise error, and [Current value error] x [measured value]. For currents over 100 A the Current offset error and the Current noise error could be omitted from the calculation since they will typically contribute less than 0.05 % to the error.

CAN

Electrical Specifications						
Parameter	Min	Тур	Max	Units	Conditions/Comments	
Charge measurement		<1		μC	Minimum discernible amount of charge	
resolution					change,100 Hz report rate	
Temperature Measureme	ent (For s	hunt temp	erature n	neasurem	ent)	
Absolute temperature	-5	±0.5	+5	°C	Built-in temperature sensor for shunt	
measurement error					temperature measurements	
Temperature measurement			10	m°C	Practical temperature measurement	
resolution					granularity	
Isolation						
Test voltage		3		kV _{DC}	CAN interface to SHUNT.	
					1 min duration	
Communication						
Interface	Spec	Speed	Termir	nation	Number of units	
					in the same CAN branch	

 $120\,\Omega$

2.0B

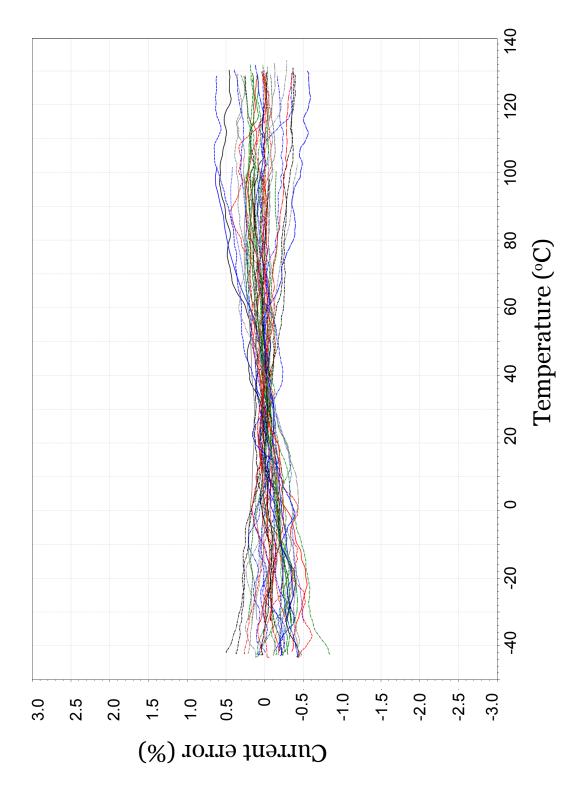
 $500 \; \mathrm{kb/s}$

Connectors

Interface	Manuf	Positions	Part number	Description
CAN & power	Molex	4	347920040	4 pos. header, Shrouded connector (2.00
on board				mm), Through hole tin
Can & power	Molex	4	347910040	Use appropriate crimp contacts (avail-
mating con.				able for AWG 22, 24 and 26)

CAN and Power header & mating connectors

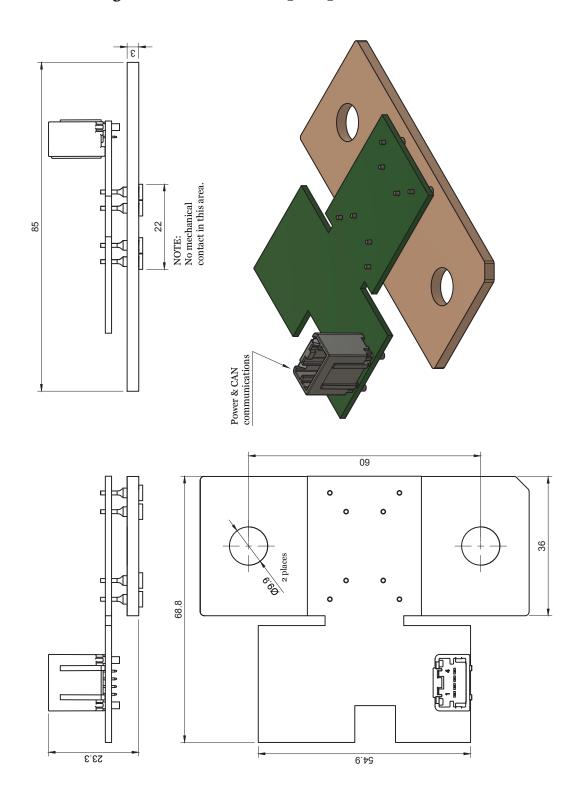
CAN Connector Pinout Description


Pin Number	Description
Pin 1	GND
Pin 2	CAN HIGH
Pin 3	CAN LOW
Pin 4	VCC

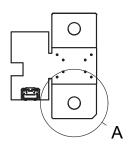
The SFP203MOD uses Molex connectors, part number 347920040.

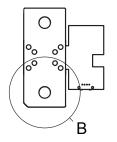
For more details please see the Molex datasheets: $www.molex.com/pdm_docs/sd/347920040_sd.pdf$

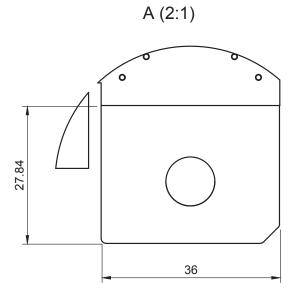
Measured performance data

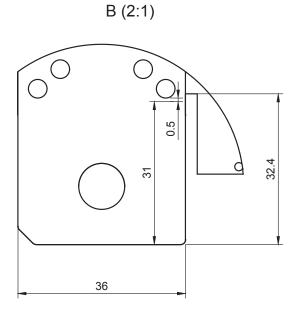

Current error over temperature range of -40 °C to +125 °C

6

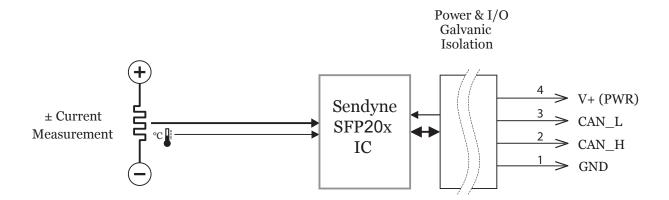

Mechanicals


SFP203MOD general dimensions [mm]




Mechanicals

SFP203MOD shunt contact points [mm]



SFP203MOD block diagram

Ordering Information

Part Number	Description
SFP203CA-MOD	SFP203MOD Module
SFP203KIT	SFP203MOD module, CAN to USB protocol converter
	for PC communication, Windows software and cable

10

Revision History

Revision Table				
Revision Number	Date	Comments		
0.1	2/20/2017	Preliminary; Initial release		

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

SENDYNE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESSED OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Sendyne disclaims all liability arising from this information and its use. Use of Sendyne devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Sendyne from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Sendyne intellectual property rights.

Patents

US Pat. 8,264,216 US Pat. 8,289,030 US Pat. 9,052,343 Other patents pending

Trademarks

The Sendyne name and logo are registered trademarks of Sendyne Corp.

All other trademarks mentioned herein are properties of their respective owners.

© 2016 Sendyne Corp.
All Rights Reserved.

1234567890 1234567890

Sendune®

Preliminary Rev 0.1 © 2017 Sendyne Corp.

11